Abstract
A model of the left ventricle which combines a spheroidal geometry with a spatial fiber angle distribution is presented. The mechanics of each muscle fiber is described by its passive stress-strain relationship, active stress-strain relationship, and an activation function (half a sinusoid) which represents the time-dependent degree of activation of the fiber. A stress-strain rate relationship which characterizes the muscle fibers is used to calculate the mechanics of left ventricular contraction during ejection. Furthermore, a radial electrical signal propagation from the endocardium to the epicardium is used here as a first approximation to the actual depolarization sequence. The model is used to describe the process of contraction throughout the systole. The different calculated parameters and indices of left ventricular function are presented and discussed for different preloading, afterloading and contractility conditions. The maximum elastance is found to be an optimal macroscale parameter of contractility, as it is completely preload and afterload independent, and is a good reflection of the active microscale sarcomere stress-strain relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.