Abstract

A computer simulation program is developed for predicting desalinating performance of a batch electrodialysis process. The program includes the principle of ① mass transport, ② current density distribution, ③ cell voltage, ④ mass balance/energy consumption and ⑤ limiting current density. In this simulation the following parameters are inputted; ① membrane characteristics such as overall transport number, overall solute permeability, overall electro-osmotic permeability, overall hydraulic permeability, direct current electric resistance etc., ② electrodialyzer specifications such as flow-pass thickness, flow-pass width and flow-pass length in a desalting cell etc. and ③ electrodialytic conditions such as voltage, electrolyte concentration in a feeding solution, linear velocity in desalting cells, standard deviation of normal distribution of solution velocity ratio etc. The following phenomena were computed and discussed; ① Changes of electrolyte concentration and current density with operation time. ② Influence of cell voltage on operation time (batch duration), water recovery and energy consumption. ③ Influence of volume of an electrolyte solution prepared at first on operation time. ④ Influence of cell voltage, electrolyte concentration and standard deviation of solution velocity ratio in desalting cells on limiting current density. ⑤ Energy consumption in a reverse osmosis process. ⑥ Excepting limiting current density, the performance of an electrodialyzer is never influenced by the standard deviation of normal distribution of solution velocity ratio in desalting cells. ⑦ Energy consumption in electrodialysis is less than that in reverse osmosis at feeding saline water concentration less than about 2000 mg/l .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call