Abstract
We study invariant sets and measures generated by iterated function systems defined on countable discrete spaces that are uniform grids of a finite dimension. The discrete spaces of this type can be considered as models of spaces in which actual numerical computation takes place. In this context, we investigate the possibility of the application of the random iteration algorithm to approximate these discrete IFS invariant sets and measures. The problems concerning a discretization of hyperbolic IFSs are considered as special cases of this more general setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electronics and Telecommunications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.