Abstract
A model of intracranial pressure (ICP) dynamics that uses fluid volumes as primary state variables is presented, along with clinical data for two subjects with elevated ICP. The data includes annotations to indicate the precise timing of clinical changes in cerebral spinal fluid drainage, head of bed elevation, and minute ventilation. The response to changes in the clinical parameters was used to calibrate the model to correspond to specific subjects by estimating values for key characteristics such as hematoma volume and CSF uptake resistance. The error in mean ICP predicted by the model was less than 2 mmHg when cerebral spinal fluid is drained and the head of bed elevation was increased. The error in mean ICP predicted by the model exceeded 5 mmHg during an episode when the head of bed was decreased and also during a reduction in minute ventilation. The estimated values for hematoma volume and other subject characteristics were plausible but could not be verified empirically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.