Abstract

The purpose of this study was to clarify the relationship between mechanical stress and tissue response of the contracted knee joint in rats and to propose a new design of contracture correction device for clinical use. Wistar rats were operated on to immobilize their knee joints with a procedure causing periarticular bleeding and were kept in flexed position for 40 days. At day 40, the immobilizing wire was removed, and after day 43, the contracted knee joint had been treated with tunable corrective devices secured by an external fixation method to the rear limb. These devices consisted of four types of motor-driving system which provided several different low-load and continuous stretch torques. Measuring the angle of maximum knee extension, its effectiveness was assessed comparing with a lower load and control group of natural recovery course. The device also had a cyclic joint movement within the acquired range of motion and an oval cam mechanism producing a small distraction force to the joint along its long axis. The results showed that an appropriate range of low-load continuous torque was more effective to correct joint contracture. On the basis of the animal experiment, a new computer-controlled, gas-driven contracture correction device was developed for clinical trial. It was concluded that mechanical application in a condition with low and continuous torque is a useful treatment for fixed joint contracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.