Abstract

We derive explicit closed-form matrix representations of Hamiltonians drawn from tensored algebras, such as quantum spin Hamiltonians. These formulas enable us to soft-code generic Hamiltonian systems and to systematize the input data for uniformly structured as well as for un-structured Hamiltonians. The result is an optimal computer code that can be used as a black box that takes in certain input files and returns spectral information about the Hamiltonian. The code is tested on Kitaev’s toric model deployed on triangulated surfaces of genus 0 and 1. The efficiency of our code enables these simulations to be performed on an ordinary laptop. The input file corresponding to the minimal triangulation of genus 2 is also supplied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.