Abstract

Accurate prediction of the expression of programmed death ligand 1 (PD-L1) in head and neck squamous cell carcinoma (HNSCC) before immunotherapy is crucial. This study was performed to construct and validate a contrast-enhanced computed tomography (CECT)-based radiomics signature to predict the expression of PD-L1 in HNSCC. In total, 157 patients with confirmed HNSCC who underwent CECT scans and immunohistochemical examination of tumor PD-L1 expression were enrolled in this study. The patients were divided into a training set (n = 104; 62 PD-L1-positive and 42 PD-L1-negative) and an external validation set (n = 53; 34 PD-L1-positive and 19 PD-L1-negative). A radiomics signature was constructed from radiomics features extracted from the CECT images, and a radiomics score was calculated. Performance of the radiomics signature was assessed using receiver operating characteristics analysis. Nine features were finally selected to construct the radiomics signature. The performance of the radiomics signature to distinguish between a PD-L1-positive and PD-L1-negative status in both the training and validation sets was good, with an area under the receiver operating characteristics curve of 0.852 and 0.802 for the training and validation sets, respectively. A CECT-based radiomics signature was constructed to predict the expression of PD-L1 in HNSCC. This model showed favorable predictive efficacy and might be useful for identifying patients with HNSCC who can benefit from anti-PD-L1 immunotherapy. • Accurate prediction of the expression of PD-L1 in HNSCC before immunotherapy is crucial. • A CECT-based radiomics signature showed favorable predictive efficacy in estimation of the PD-L1 expression status in patients with HNSCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.