Abstract
Abstract. Efficient methods for predicting weather-related hazards are crucial for the effective management of environmental risk. Many environmental hazards depend on the evolution of meteorological conditions over protracted periods, requiring assessments that account for evolving conditions. The TAMSAT-ALERT approach addresses this challenge by combining observational monitoring with a weighted multi-year ensemble. In this way, it enhances the utility of existing systems by enabling users to combine multiple streams of monitoring and meteorological forecasting data into holistic hazard assessments. TAMSAT-ALERT forecasts are now used in a number of regions in the Global South for soil moisture forecasting, drought early warning and agricultural decision support. The model presented here, General TAMSAT-ALERT, represents a significant scientific and functional advance on previous implementations. Notably, General TAMSAT-ALERT is applicable to any variable for which time series data are available. In addition, functionality has been introduced to account for climatological non-stationarity (for example due to climate change), large-scale modes of variability (for example El Niño) and persistence (for example of land-surface conditions). In this paper, we present a full description of the model, along with case studies of its application to the prediction of central England temperature, Pakistan vegetation conditions and African precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.