Abstract

We present a realistic, yet computationally inexpensive simulation model for IEEE 802.11p radio shadowing in urban environments. Based on real world measurements using IEEE 802.11p/DSRC devices, we estimated the effect that buildings and other obstacles have on the radio communication between vehicles. Especially for evaluating safety applications in the field of Vehicular Ad Hoc Networks (VANETs), stochastic models are not sufficient for evaluating the radio communication in simulation. Motivated by similar work on WiFi measurements, we therefore created an empirical model for modeling buildings and their properties to accurately simulate the signal propagation. We validated our model using real world measurements in a city scenario for different types of obstacles. Our simulation results show a very high accuracy when compared with the measurement results, while only requiring a marginal overhead in terms of computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.