Abstract
Short-term traffic prediction plays an important role in intelligent transport systems. This paper presents a novel two-stage prediction structure using the technique of Singular Spectrum Analysis (SSA) as a data smoothing stage to improve the prediction accuracy. Moreover, a novel prediction method named Grey System Model (GM) is introduced to reduce the dependency on method training and parameter optimisation. To demonstrate the effects of these improvements, this paper compares the prediction accuracies of SSA and non-SSA model structures using both a GM and a more conventional Seasonal Auto-Regressive Integrated Moving Average (SARIMA) prediction model. These methods were calibrated and evaluated using traffic flow data from a corridor in Central London under both normal and incident traffic conditions. The prediction accuracy comparisons show that the SSA method as a data smoothing step before the application of machine learning or statistical prediction methods can improve the final traffic prediction accuracy. In addition, the results indicate that the relatively novel GM method outperforms SARIMA under both normal and incident traffic conditions on urban roads.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.