Abstract

This article considers the robust regulation problem for a class of constrained linear switched systems with bounded additive disturbances. The proposed solution extends the existing robust tube based model predictive control (RTBMPC) strategy for non-switched linear systems to switched systems. RTBMPC utilizes nominal model predictions, together with tightened sets constraints, to obtain a control policy that guarantees robust stabilization of the dynamic systems in presence of bounded uncertainties. In this work, similar to RTBMPC for non-switched systems, a disturbance rejection proportional controller is used to ensure that the closed loop trajectories of the switched linear system are bounded in a tube centered on the nominal system trajectories. To account for the uncertainty related to all sub-systems, the gain of this controller is chosen to simultaneously stabilize all switching dynamics. The switched system RTBMPC requires an on-line solution of a Mixed Integer Program (MIP), which is computationally expensive. To reduce the complexity of the MIP, a sub-optimal design with respect to the previous formulation is also proposed that uses the notion of a pre-terminal set in addition to the usual terminal set to ensure stability. The RTBMPC design with the pre-terminal set aids in determining the trade-off between the complexity of the control algorithm with the performance of the closed-loop system while ensuring robust stability. Simulation examples, including a Three-tank benchmark case study, are presented to illustrate features of the proposed MPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call