Abstract

The normal mode method is widely used in ocean acoustic propagation. Usually, finite difference and finite element methods are used in its solution. Recently, a method has been proposed for heterogeneous layered waveguides where the depth eigenproblem is solved using the classical Rayleigh–Ritz approximation. The method has high accuracy for low to high frequency problems. However, the matrices that appear in the eigenvalue problem for radial wavenumbers require numerical integration of the matrix elements since the sound speed and density profiles are numerically defined. In this paper, a technique is proposed to reduce the computational cost of the Rayleigh–Ritz method by expanding the sound speed profile in a Fourier series using nonlinear least square fit so that the integrals of the matrix elements can be computed in closed form. This technique is tested in a variety of problems and found to be sufficiently accurate in obtaining the radial wavenumbers as well as the transmission loss in a waveguide. The computational savings obtained by this approach is remarkable, the improvements being one or two orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.