Abstract
Simulating non-wetting fluid invasion in volumetric images of porous materials is of broad interest in applications as diverse as electrochemical devices and CO2 sequestration. Among available methods, image-based algorithms offer much lower computational cost compared to direct numerical simulations. Recent work has extended image-based methods to incorporate more physics such as gravity and volume-controlled invasion. The present work combines these two developments to develop an image-based invasion percolation algorithm that incorporates the effect of gravity. Additionally, the presented algorithm was developed using a priority queue algorithm to drastically reduce the computational cost of the simulation. The priority queue-based method was validated against previous image-based methods both with and without the effect of gravity, showing identical results. It was also shown that the new method provides a speedup of 20X over the previous image-based methods. Finally, comparison with experimental results at three Bond numbers showed that the model can predict the real invasion process with a high accuracy with and without gravitational effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.