Abstract

A computationally efficient nonuniform digital FIR filter bank is proposed for hearing aid applications. The eight nonuniform spaced subbands are formed with the help of frequency-response masking technique. Two half-band finite-impulse response (FIR) filters are employed as prototypes resulting in significant improvements in the computational efficiency. We show, by means of example, that an eight-band nonuniform FIR filter bank with stopband attenuation of 80 dB can be implemented with 15 multipliers. The performance of the filter bank is enhanced by optimizing the gains for each subband. The tests on various hearing loss cases suggest that the proposed filter achieves reasonable good matching between audiograms and magnitude responses of the filter bank at very low computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.