Abstract

We propose a computationally efficient fully polynomial-time approximation scheme (FPTAS) to compute an approximation with arbitrary precision of the value function of convex stochastic dynamic programs, using the technique of $K$-approximation sets and functions introduced by Halman et al. [Math. Oper. Res., 34, (2009), pp. 674--685]. This paper deals with the convex case only, and it has the following contributions. First, we improve on the worst-case running time given by Halman et al. Second, we design and implement an FPTAS with excellent computational performance and show that it is faster than an exact algorithm even for small problem instances and small approximation factors, becoming orders of magnitude faster as the problem size increases. Third, we show that with careful algorithm design, the errors introduced by floating point computations can be bounded, so that we can provide a guarantee on the approximation factor over an exact infinite-precision solution. We provide an extensive computational evaluation based on randomly generated problem instances coming from applications in supply chain management and finance. The running time of the FPTAS is both theoretically and experimentally linear in the size of the uncertainty set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.