Abstract

A multi-level spatial optimization (MLSOPT) approach is developed for solving complex watershed scale optimization problems. The method works at two levels: a watershed is divided into small sub-watersheds and optimum solutions for each sub-watershed are identified individually. Subsequently sub-watershed optimum solutions are used for watershed scale optimization. The approach is tested with complex spatial optimization case studies designed to maximize crop residue (corn stover) harvest with minimum environmental impacts in a 2000 km2 watershed. Results from case studies indicated that the MLSOPT approach is robust in convergence and computationally efficient compared to the traditional single-level optimization frameworks. The MLSOPT was 20 times computationally efficient in solving source area based optimization problem while it was 3 times computationally efficient for watershed outlet based optimization problem compared to a corresponding single-level optimizations. The MLSOPT optimization approach can be used in solving complex watershed scale spatial optimization problems effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.