Abstract
Computational chemistry plays a key role in the construction of the current understanding of the reaction mechanisms for the reaction of coinage metal complexes with hydrocarbons. Carbene precursors (diazo compounds) or nitrene precursors (hypervalent iodine compounds or azides) react with the catalyst complexes giving rise to highly reactive metallocarbene or metallonitrene intermediates, which are difficult to observe experimentally. DFT calculations allow the characterization of these intermediates and of their reactivity with hydrocarbons, leading to C–H insertion, aziridination or oxazole synthesis. This review summarizes computational work in the last decade in this research field, which has progressed in collaboration with experimental knowledge on these systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.