Abstract
Postsynaptic ionotropic receptors critically shape synaptic currents and underpin their activity-dependent plasticity. In recent years, regulation of expression of these receptors by slow inward and outward currents mediated by gliotransmitter release from astrocytes has come under scrutiny as a potentially important mechanism for the regulation of synaptic information transfer. In this study, we consider a model of astrocyte-regulated synapses to investigate this hypothesis at the level of layered networks of interacting neurons and astrocytes. Our simulations hint that gliotransmission sustains the transfer function across layers, although it decorrelates the neuronal activity from the signal pattern. Overall, our results make clear how astrocytes could transform neuronal activity by inducing a lowfrequency modulation of postsynaptic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.