Abstract

This work presents a study of the adsorption properties of defective nanostructures. The calculations have quantum mechanical detail and are based on a semi-empirical Hamiltonian, which is applied to the evaluation of both the electronic structure and of the conductance. The material considered in this study, i.e. SnO 2, has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small molecules. In the following calculations crystalline SnO 2 nanograins, with a size and shape comparable with the experimental ones, have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and the adsorbed system is generated by depositing a gaseous molecule, either CO or O 2, above an atom on the grain surface. The calculations show that the presence of the defects enhances the grain cohesion and favors adsorption. The conductance has a functional relationship with the structure and the defective state of the nanograins and its dependence on these quantities parallels the one of the binding energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.