Abstract

A computational preliminary study on the fracture behaviour of two kinds of finite-size bio-inspired lattice configurations is presented. The study draws inspiration from recent investigations aimed at increasing the fracture energy of some materials through small modifications of their microstructure. Nature provides several examples of strategies used to delay or arrest damage initiation and crack propagation. Striking examples are provided by the micro-architecture of several kinds of wood. In this study, the effects on crack propagations induced by architectural alterations inspired by the microstructure of wood are computationally investigated. In an age in which tight control of the micro-architecture can be achieved, e.g. through high-resolution 3D printing, it is of interest to investigate whether, starting from a baseline cellular architecture, it is possible to achieve superior material performance by simple but smart topological modifications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.