Abstract

In order to develop a chemical species tomography system, this paper carries out various computational steps to address the problem of measuring minor species concentration using single-pass, short path-length absorption techniques in the mid-infrared. It focuses on the imaging of carbon monoxide (CO) in combustion exhaust as a case study, with an average concentration of 10 ppm over a 50 mm diameter cross-section, taking account of the presence of other absorbing species. CO absorption transitions R6, R7, R9 and R10 are identified as possible measurement targets. The joint effects of spectral absorption linewidth and laser source linewidth are considered at length, resulting in recommendations for laser linewidth to achieve appropriate levels of CO absorption signal purity. Measurement strategies are considered for achievement of the necessary sensitivity, noise and bandwidth performance. A feasible beam arrangement for tomographic imaging is discussed, providing 48 measurements of path concentration integral. Representative phantom reconstructions are presented, with encouraging results for application to such dynamic gaseous subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.