Abstract

A computational study has been conducted to determine the critical conditions for the transition from localized flame ignition and propagation to the establishment of a flame ball. Lean H2/air mixtures are investigated using a time-dependent, spherically symmetric code with detailed chemistry, transport, and radiation submodels. Results show that outwardly propagating spherical flames can be ignited for hydrogen mole fractions larger than 3.5%. Furthermore, assuming optically thin radiative heat loss, flame balls XH2 can be established from centrally ignited premixed spherical flames only within a narrow range of mixture compositions (i.e., 3.5% 6.5%). For 6.5% 11%, flames propagate until radiative XX HH 22 extinction, never evolving into flame balls, while for 11%, the expanding spherical flames develop XH2 asymptotically into planar propagating flames. These findings corroborate the experimental result that the range of mixtures within which flame balls have been observed is much narrower than that predicted by previous one-dimensional instability analysis of the flame ball, where it was shown that steady flame balls exist for 3.5% 10.7%. The present simulation also shows that the dynamic transition from a XH2 spherically propagating flame to the flame ball controls the range of mixtures for which flame balls can be reached, with radiative loss being both the requisite mechanism for and the limiting mechanism against the dynamic transformation. Additional calculations show that the size of the flame ball is noticeably enlarged when radiative reabsorption is incorporated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.