Abstract
The relative rates of reaction of thiirane and thiirane derivatives with NH3, a series of secondary amines including aziridine, and trimethylamine were determined in the gas phase by means of B3LYP/6-31+G(d)//HF/6-31+G(d) computations and transition state theory. Convergence of the results was selectively tested using the 6-311++G(d,p) basis set. Comparison with MP2/6-31 + G(d)//MP2/6-31G(d) computations was made in model cases. These results are significant in that they supplement the only reported gas-phase experimental study of this type of reaction. The reaction rates of thiirane with secondary amines can best be rationalized by means of an interplay of steric and polarizability effects. While beta-halo substituents retard S(N)2 reactions in solution, both 2-fluorothiirane and its acyclic model react more than l0(6) times faster with NH3 than the unsubstituted compounds in the gas phase. 2-Fluorothiirane was calculated to react with NH3 at C2 by a factor of 0.142 with respect to thiirane itself; attack at C3 was found to be 3.42 x 10(6) times faster than the parent compound. 2-Methylthirane reacts with NH3 at 0. 230 the rate of thiirane with a 12.8-fold regioselectivity for C3. In the reaction of 2,2-dimethylthirane and NH3, this preference for C3 increases to a factor of 124. Ground-state destabilization of cis-2,3-dimethylthiirane is sufficient to account for its calculated rate acceleration with respect to the trans isomer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.