Abstract
This paper reports the validation of a three-dimensional numerical simulation of the mixture preparation in a direct-injection (DI) hydrogen-fueled engine. Computational results from the commercial code CONVERGE are compared to the experimental data obtained from an optically accessible engine. The geometry used in the simulation is a passenger-car sized, four-stroke, and spark-ignited engine. The simulation includes the geometry of the combustion chamber as well as the intake and exhaust ports. The hydrogen is supplied at 100 bar from a centrally located injector with a single-hole nozzle. The comparison between the simulation and experimental data is made on the central vertical plane. The fuel mole concentration and flow field are compared during the compression stroke at different crank angles (CA). The comparison shows good agreement between the numerical and experimental results during the early stage of the compression stroke. The penetration of the jet and the interaction with the cylinder walls are correctly predicted. The fuel spreading is under predicted which results in differences in flow field and fuel mixture during the injection between experimental and numerical results. At the end of the injection, the fuel distribution shows some disagreement which gradually increases during the rest of the simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.