Abstract

We study computationally the self-organization of DNA-functionalized colloidal particles confined to two dimensions and subjected to a linear shear force. We show that hydrodynamic forces allow a more thorough sampling of phase space than thermal or Brownian forces alone. Two particle types are present in each of our dynamic simulations each signifying its own specific oligonucleotide sequence grafted to the particle surface: A-type and B-type. Particles are modeled as interacting via a type-specific DNA attraction where unlike-types have affinities for each other while like-types do not. The particles are small enough to feel Brownian motion while the shear adds motion to the particles. We find the formation of lines of A-type and B-type particles in simulations with an imposed shear. Simulations without imposed shear form a frustrated network with little or no linear order. An orientational distribution function, g2(r), quantifies the degree of linear order. A phase diagram is constructed, finding a linear dependence of the minimum DNA force necessary for line formation on the dimensionless shear rate. A force analysis performed on the structures shows that the lines orient perpendicular to the axis of the elongation component of the shear because it is this orientation that allows the DNA attraction to resist the shear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.