Abstract

We present the results of three-dimensional direct numerical simulations of the dynamic motion of a gas bubble rising in Carreau model fluids. The simulations are carried out by a coupled level-set/volume-of-fluid (CLSVOF) method, which combines some of the advantages of the volume-of-fluid (VOF) method with the level-set (LS) method. In our study, it is shown that the motion of a rising gas bubble largely depends on the Carreau model parameters, n and B (n, the slope of decreasing viscosity and B, time constant). Both the model parameters, n and B, have considerable influence on the bubble rise motion. Using numerical analysis, we can understand in detail the bubble morphology for non-Newtonian two-phase flow systems. We also discuss bubble rise motion in shear-thinning fluids in terms of the effective viscosity, ηeff, the effective Reynolds number, Reeff and the effective Morton number, Meff.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call