Abstract

The deposition of firebrands between two blocks, representing neighboring simplified structures, was investigated by large-eddy simulation and Lagrangian tracking of firebrands. Fire Dynamics Simulator was modified and implemented for simulations. The computational configuration resembled the previous wind-tunnel measurement setup including two blocks and the firebrand generator apparatus, aka NIST Dragon (Suzuki and Manzello 2021). Different wind speeds and frictional coefficients between the sliding firebrands and the ground were considered. Simulations revealed several flow effects influencing the motion of firebrands on the ground, such as re-circulation flow in the wake of the dragon, a crossflow upwind of the blocks, and twin re-circulation regions on leeward and windward sides of the blocks. At lower wind speeds, firebrands were accumulated somewhere between the dragon and the blocks, consistent with observations in the previous measurements. At higher wind speeds, the firebrands tended to accumulate momentarily before the crossflow region and then accelerate through the gap between the blocks. Some accumulated in the leeward corner of the blocks. Firebrands displayed much more dispersion in the streamwise direction compared to the spanwise direction because the normal component of the Reynolds stress was greater in the streamwise direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.