Abstract

AbstractHydrogen bonding between carbazole and pyridine is known to quench fluorescence emission of carbazole. Three carbazolopyridinophanes—compounds composed of carbazole and pyridine subunits such that an intramolecular hydrogen bond may exist between them—have been pursued as reversible fluorescent sensors that detect given analytes through fluorescence restoration. However, these sensors exhibit background fluorescence believed to be related to the proportion of non‐hydrogen‐bonded conformers present. In this computational investigation, the potential energy surfaces of various hydrogen‐bonded carbazole:pyridine complexes are investigated using density functional theory with the intent of explaining the observed background fluorescence for the carbazolopyridinophanes. The results indicate carbazolopyridinophane conformers most resembling the geometry of their corresponding free carbazole:pyridine complexes exhibit the least background fluorescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.