Abstract

From the standpoint of reporting a new contribution, this paper shows that by using bilinear interpolation followed by direct two-dimensional Fourier inversion, one can obtain reconstructions of quality which is comparable to that produced by the filtered-backpropagation algorithm proposed recently by Devaney. For an N × N image reconstructed from N diffracted projections, the former approach requires approximately 4N FFT's, whereas the backpropagation technique requires approximately N <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> FFT's. We have also taken this opportunity to present the reader with a tutorial introduction to diffraction tomography, an area that is becoming increasingly important not only in medical imaging, but also in underwater and seismic mapping with microwaves and sound. The main feature of the tutorial part is the statement of the Fourier diffraction projection theorem, which is an extension of the traditional Fourier slice theorem to the case of image formation with diffracting illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.