Abstract
Computational nanotechnology provides theoretical understanding of complex nanoparticles properties and may enlighten their potential applications. In this paper, we use graph algorithms based on the dynamic programming to develop a software system which computes a set of optimal physical properties of the C20 nanoparticle. The computational results of our developed software system have not been reported previously. C20 nanoparticle is the smallest and simplest fullerene composed of twenty equivalent carbon atoms arranged in a cage structural form. The twenty carbon atoms of C20 nanoparticle are also arranged in two other major structures: bowl and ring. The study considers all three major structures of C20 nanoparticle and computes their physical indices including Wiener, hyper-Wiener, Harary and reciprocal Wiener. The Hosoya and hyper-Hosoya polynomials of the cage, bowl and ring structures of C20 nanoparticle have been also computed. The accuracy of the computational results was proved with the mathematical equations between the indices and polynomials. Our computational results also showed good agreement with the physical properties of the cage, bowl and ring structures of C20 nanoparticle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational and Theoretical Nanoscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.