Abstract

The combustion process and fluid flow in a compression ignition natural gas engine with separated chamber are studied by coupling Multi-dimensional Computational Fluid Dynamic (CFD) code FIRE with detailed chemical kinetic mechanism. The calculated data are first validated by experimental data. Subsequently, Multidimensional simulations at a baseline condition are carried out to investigate combustion process, fluid flow, mixture formation and NO emission distribution in the chamber. Ultimately, parametric studies are conducted to illustrate the effect of some parameters on engine performance. The results show that calculated data are in good agreement with the experimental data. It is revealed that auto-ignition of natural gas occurs in separated chamber when the local mixture temperature reaches around 1300 K and engine performance has a strong dependency on some parameters, such as injection timing, composition of natural gas and initial temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.