Abstract
In this paper, we deal with the estimation, under a semi-parametric framework, of the Value-at-Risk (VaR) at a level p, the size of the loss occurred with a small probability p. Under such a context, the classical VaR estimators are the Weissman–Hill estimators, based on any intermediate number k of top-order statistics. But these VaR estimators do not enjoy the adequate linear property of quantiles, contrarily to the PORT VaR estimators, which depend on an extra tuning parameter q, with 0≤q<1. We shall here consider ‘quasi-PORT’ reduced-bias VaR estimators, for which such a linear property is obtained approximately. They are based on a partially shifted version of a minimum-variance reduced-bias (MVRB) estimator of the extreme value index (EVI), the primary parameter in Statistics of Extremes. Due to the stability on k of the MVRB EVI and associated VaR estimates, we propose the use of a heuristic stability criterion for the choice of k and q, providing applications of the methodology to simulated data and to log-returns of financial stocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.