Abstract

TRIP steel shows excellent mechanical properties such as greatly high strength, ductility and toughness by means of the appropriate combination of the strain-induced martensitic transformation (SIMT) behavior and the deformation behavior of each phase at crystal scale. In the past, the effect of grain size in the austenite on the deformation behavior of TRIP steel is investigated by introducing the grain size into a generalized model for the kinetics of SIMT. In order to validate the size-dependent kinetics modelling, it is necessary to simulate the deformation and SIMT behavior of the polycrystalline for the different grain size at the crystal scale. This study focuses on an investigation of SIMT behavior in polycrystalline TRIP steel by finite element simulation. The constitutive formula for monocrystalline TRIP steel including transformation strain in each variant system derived on the basis of the continuum crystal plasticity theory is applied. For the polycrystalline model, Voronoi tessellation is employed. The deformation behavior with a patterning process of martensitic phase in two different numbers of grains with initial crystal orientations for describing the deformation-related length scale is simulated under plane strain condition with two planar slip systems by a cellular automata approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.