Abstract

This paper investigates the failure mode and the damage mechanism of steel-concrete composite slabs under high cycle fatigue loads by using three-dimensional nonlinear finite element analysis. The applicability of the simulation system, which was originally developed for reinforced concrete slabs, is extended to the steel-concrete composites with the proposed interface element, and experimentally verified with fatigue loading tests for bridge decks. The computed midspan deflection of composite slabs shows a fair agreement with data obtained from the experiment, and the horizontally induced cracking observed in reality is properly reproduced by the computational simulation. Finally, the authors predict the ultimate state at which the upper concrete layer separated by horizontal cracks fails in compression fatigue, and the corresponding S-N diagram is computationally predicted for the future discussion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.