Abstract

ABSTRACT Aromatic phenylpropenoids in Piper betle essential oil composition can be promising, leading structures to develop inhibitors toward spike proteins of SARS-CoV-2 variants D614G, N501Y, and S477N. Structural formulae of chemical constituents were referenced from our previous report in the literature. Their quantum properties were determined using density functional theory (DFT). Static inhibitability, hydrogen-bonding interactions, and shape complementarity of the ligand-protein complexes were investigated using molecular docking (MD) simulation. All aromatic phenylpropenoids, eucalyptol (TH1), chavicol acetate (TH3), eugenol (TH4), trans-isoeugenol (TH5), and eugenol acetate (TH11), are predicted to form stable interactions with their targeted proteins and perform high degree of complementarity toward in-pose geometrical shapes. Regarding each variant, the most stable inhibitory systems are TH3-D614G (DS −11.9 kcal.mol−1; 3 hydrogen bonds), TH5-N501Y (DS −12.0 kcal.mol−1; 3 hydrogen bonds), and TH11-S477N (DS −12.5 kcal.mol−1; 4 hydrogen bonds). Lipinski’s rule of five justifies the physiochemical and pharmaceutical compatibility of all studied compounds. The results propose a chemotype for enzyme-inhibiting frameworks while still requiring further verification from relevant theoretical and experimental work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.