Abstract
Selective Laser Melting (SLM) of metallic powders, especially of high-strength nickel based alloys, allows for the manufacturing of components of high shape complexity and load capacity. However, due to high temperature gradients, induced during laser processing, the structural properties and geometrical accuracy of components can be affected. This paper aims to analyse different modelling approaches of the thermo-mechanical effects in SLM manufacturing of aero-engine components, in order to determine in advance possible shape distortions. Hereby, a methodical model reduction is proposed and evaluated to allow the finite element analysis of larger components with reasonable computational time. Major process characteristics such as heat input, molten region geometry (i.e. macrographs), material deposition (i.e. layer thickness), temperature dependent material and powder properties, phase transformation, process sequences and convection effects are taken into consideration. The proposed model reduction aims to decrease time consuming modelling effort and high computation duration and yet provide reliable structural results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.