Abstract
We explore a computational approach to proving intractability of certain counting problems. More specifically we study the complexity of Holant of 3-regular graphs. These problems include concrete problems such as counting the number of vertex covers or independent sets for 3-regular graphs. The high level principle of our approach is algebraic, which provides sufficient conditions for interpolation to succeed. Another algebraic component is holographic reductions . We then analyze in detail polynomial maps on ***2 induced by some combinatorial constructions. These maps define sufficiently complicated dynamics of ***2 that we can only analyze them computationally. We use both numerical computation (as intuitive guidance) and symbolic computation (as proof theoretic verification) to derive that a certain collection of combinatorial constructions, in myriad combinations, fulfills the algebraic requirements of proving #P-hardness. The final result is a dichotomy theorem for a class of counting problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.