Abstract

The tetrazine ligation is one of the fastest bioorthogonal ligations and plays a pivotal role in time-critical in vitro and in vivo applications. However, prediction of the reactivity of tetrazines in inverse electron demand Diels–Alder-initiated ligation reactions is not straight-forward. Commonly used tools such as frontier molecular orbital theory only give qualitative and often even wrong results. Applying density functional theory, we have been able to develop a simple computational method for the prediction of the reactivity of aryl/alkyl-substituted tetrazines in inverse electron demand Diels–Alder reactions.Graphical

Highlights

  • Tetrazine ligations (TLs) are bioorthogonal inverse electron demand Diels–Alder (IEDDA) initiated cycloadditions proceeding with exceptional high second-order rates of up to 3,300,000 M-1 s-1 [1]

  • In TLs, an 1,2,4,5-tetrazine (Tz) reacts with an electron-rich dienophile in an IEDDA reaction followed by cycloreversion under the loss of nitrogen (Fig. 1)

  • We have investigated the reactivity of several 3-aryl-6-(3-fluoropropyl)-1,2,4,5-tetrazines 1–8 as chemical probes for rapid radiolabeling and pretargeted PET

Read more

Summary

Introduction

Tetrazine ligations (TLs) are bioorthogonal inverse electron demand Diels–Alder (IEDDA) initiated cycloadditions proceeding with exceptional high second-order rates of up to 3,300,000 M-1 s-1 [1]. In TLs, an 1,2,4,5-tetrazine (Tz) reacts with an electron-rich dienophile in an IEDDA reaction followed by cycloreversion under the loss of nitrogen (Fig. 1). Strained alkenes such as norbornenes [2, 3], cyclopropenes [4, 5], and trans-cyclooctenes (TCOs) [1, 6,7,8] are commonly used dienophiles, with TCOs providing the highest reactivity.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.