Abstract
The knowledge-based economy has drawn increasing attention recently, particularly in online shopping applications where all the transactions and consumer opinions are logged. Machine learning methods could be used to extract implicit knowledge from the logs. Industries and businesses use the knowledge to better understand the consumer behavior, and opportunities and threats correspondingly. The outbreak of coronavirus (COVID-19) pandemic has a great impact on the different aspects of our daily life, in particular, on our shopping behaviour. To predict electronic consumer behaviour could be of valuable help for managers in government, supply chain and retail industry. Although, before coronavirus pandemic we have experienced online shopping, during the disease the number of online shopping increased dramatically. Due to high speed transmission of COVID-19, we have to observe personal and social health issues such as social distancing and staying at home. These issues have direct effect on consumer behaviour in online shopping. In this paper, a prediction model is proposed to anticipate the consumers behaviour using machine learning methods. Five individual classifiers, and their ensembles with Bagging and Boosting are examined on the dataset collected from an online shopping site. The results indicate the model constructed using decision tree ensembles with Bagging achieved the best prediction of consumer behavior with the accuracy of 95.3%. In addition, correlation analysis is performed to determine the most important features influencing the volume of online purchase during coronavirus pandemic.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.