Abstract

Autonomous systems that can assist humans with increasingly complex tasks are becoming ubiquitous. Moreover, it has been established that a human’s decision to rely on such systems is a function of both their trust in the system and their own self-confidence as it relates to executing the task of interest. Given that both under- and over-reliance on automation can pose significant risks to humans, there is motivation for developing autonomous systems that could appropriately calibrate a human’s trust or self-confidence to achieve proper reliance behavior. In this article, a computational model of coupled human trust and self-confidence dynamics is proposed. The dynamics are modeled as a partially observable Markov decision process without a reward function (POMDP/R) that leverages behavioral and self-report data as observations for estimation of these cognitive states. The model is trained and validated using data collected from 340 participants. Analysis of the transition probabilities shows that the proposed model captures the probabilistic relationship between trust, self-confidence, and reliance for all discrete combinations of high and low trust and self-confidence. The use of the proposed model to design an optimal policy to facilitate trust and self-confidence calibration is a goal of future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.