Abstract

A growing body of evidence from functional neuroimaging and computational modeling studies indicates that the anterior cingulate cortex (ACC) detects the presence of response conflict and conveys this information to other brain regions, enabling subsequent adjustments in cognitive control. The present study examined previous empirical findings of increased ACC for low-frequency stimuli across three distinct speeded response tasks (two-alternative forced choice, go/no-go, and oddball). Simulations conducted in a neural network model incorporating sequential priming mechanisms (developed in Cho et al., 2002) confirmed that a computational measure of response conflict was higher on low-frequency trials across all three tasks. In addition, the model captured detailed aspects of behavioral reaction time and accuracy data, predicted the dynamics of ACC activity related to trial sequence effects, and provided evidence for the functional role of conflict information in performance monitoring and optimization. The results indicate that the conflict-monitoring hypothesis, augmented by mechanisms for encoding stimulus history, can explain key phenomena associated with performance in sequential speeded response tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.