Abstract
This paper aims to quantify the rate of improvement of electrical energy due to oxygen enrichment. For a specific membrane effective area (MEA), the flow field (FF) designer is always ready to design the FF to maximize the amount of oxygen in all areas of the catalyst layer (CL). Using the guidelines in this paper, FF designers, without cumulative computational fluid dynamics (CFD) calculations, can predict the rate of electrical energy gain due to 1 % enrichment in the amount of oxygen present in the CL. A 3D CFD tool was used to answer this question. These three constant steps of the reaction product simulate the humidified air mixture at the proton exchange membrane fuel cell (PEMFC). Results show that the analytic methods and the dynamic computational method introduced in this paper are similar in results, and the error of the CFD model is about 1.9 % compared to the analytic method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.