Abstract

According to usage-based approaches to language acquisition, linguistic knowledge is represented in the form of constructions--form-meaning pairings--at multiple levels of abstraction and complexity. The emergence of syntactic knowledge is assumed to be a result of the gradual abstraction of lexically specific and item-based linguistic knowledge. In this article, we explore how the gradual emergence of a network consisting of constructions at varying degrees of complexity can be modeled computationally. Linguistic knowledge is learned by observing natural language utterances in an ambiguous context. To determine meanings of constructions starting from ambiguous contexts, we rely on the principle of cross-situational learning. While this mechanism has been implemented in several computational models, these models typically focus on learning mappings between words and referents. In contrast, in our model, we show how cross-situational learning can be applied consistently to learn correspondences between form and meaning beyond such simple correspondences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.