Abstract

Primary visual cortex contains multiple maps of features of the visual scene, including visual field position, orientation, direction, ocular dominance and spatial frequency. The complex relationships between these maps provide clues to the strategies the cortex uses for representing and processing information. Here we simulate the combined development of all these map systems using a computational model, the elastic net. We show that this model robustly produces combined maps of these four variables that bear a close resemblance to experimental maps. In addition we show that the experimentally observed effects of monocular deprivation and single-orientation rearing can be reproduced in this model, and we make some testable predictions. These results provide strong support for the hypothesis that cortical representations attempt to optimize a trade-off between coverage and continuity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.