Abstract

Understanding the mechanism by which plants respond to cold stress and strengthen their tolerance to low temperatures is an important and challenging task in plant sciences. Experiments have established that the first step in the perception and transduction of the cold stress signal consists of a transient influx of Ca2+. This Ca2+ influx triggers the activation of a cascade of phosphorylation-dephosphorylation reactions that eventually affects the expression of C-repeat-binding factors (CBFs, notably CBF3), which were shown in many plants to control resistance to cold stress by regulating the expression of cold-regulated (COR) genes. Based on experimental observations mostly made on Arabidopsis thaliana, we build a computational model for the cold response pathway in plants, from the transduction of the cold signal via the transient influx of Ca2+ to the activation of the phosphorylation cascade leading to CBF3 expression. We explore the dynamics of this regulatory network by means of numerical simulations and compare the results with experimental observations on the dynamics of the cold response, both for the wild type and for mutants. The simulations show how, in response to cold stress, a brief Ca2+ influx, which is over in minutes, is transduced along the successive steps of the network to trigger the expression of cold response genes such as CBF3 within hours. Sometimes, instead of a single Ca2+ spike the decrease in temperature brings about a train of high-frequency Ca2+ oscillations. The model is applied to both types of Ca2+ signaling. We determine the dynamics of the network in response to a series of identical cold stresses, to account for the observation of desensitization and resensitization. The analysis of the model predicts the possibility of an oscillatory expression of CBF3 originating from the negative feedback exerted by ZAT12, a factor itself controlled by CBF3. Finally, we extend the model to incorporate the circadian control of CBF3 expression, to account for the gating of the response to cold stress by the plant circadian clock.

Highlights

  • Low temperature has adverse effects on the survival, growth, and development of plants (Chew and Halliday, 2010)

  • Given that the components of the cold response pathway are highly conserved in many plant species and that the patterns of expression of the CBF and COR genes correspond to those observed in Arabidopsis, the model that we propose for the cold response pathway pertains to Arabidopsis thaliana and to other plants

  • Our goal is to develop a detailed computational model for the plant response to cold stress involving the succession of biochemical events, from the initial Ca2+ influx to the rise in CBF3 that controls the expression of genes which confer tolerance to low temperatures

Read more

Summary

A Computational Model for the Cold Response Pathway in Plants

Ruqiang Zhang 1, Didier Gonze 2, Xilin Hou 1, Xiong You 3* and Albert Goldbeter 2*. Specialty section: This article was submitted to Systems Biology, a section of the journal Frontiers in Physiology. Experiments have established that the first step in the perception and transduction of the cold stress signal consists of a transient influx of Ca2+. This Ca2+ influx triggers the activation of a cascade of phosphorylation-dephosphorylation reactions that eventually affects the expression of C-repeat-binding factors (CBFs, notably CBF3), which were shown in many plants to control resistance to cold stress by regulating the expression of cold-regulated (COR) genes. Based on experimental observations mostly made on Arabidopsis thaliana, we build a computational model for the cold response pathway in plants, from the transduction of the cold signal via the transient influx of Ca2+ to the activation of the phosphorylation cascade leading to CBF3 expression.

INTRODUCTION
DISCUSSION
Findings
DATA AVAILABILITY STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call