Abstract

Depth information plays an important role in human vision as it provides additional cues that distinguish objects from their backgrounds. This paper explores depth information for analyzing stereoscopic saliency and presents a computational model that predicts stereoscopic visual saliency based on three aspects of human vision: 1) the pop-out effect; 2) comfort zones; and 3) background effects. Through an analysis of these three phenomena, we find that most of the stereoscopic saliency region can be explained. Our model comprises three modules, each describing one aspect of saliency distribution, and a control function that can be used to adjust the three models independently. The relationship between the three models is not mutually exclusive. One, two, or three phenomena may appear in one image. Therefore, to accurately determine which phenomena the image conforms to, we have devised a selection strategy that chooses the appropriate combination of models based on the content of the image. Our approach is implemented within a framework based on the multifeature analysis. The framework considers surrounding regions, color/depth contrast, and points of interest. The selection strategy can improve the performance of the framework. A series of experiments on two recent eye-tracking datasets shows that our proposed method outperforms several state-of-the-art saliency models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.