Abstract

Identifying the key factor(s) governing the overall protein charge is crucial for the interpretation of electrospray-ionization mass spectrometry data. Current hypotheses invoke different principles for folded and unfolded proteins. Here, first we investigate the gas-phase structure and energetics of several proteins of variable size and different folds. The conformer and protomer space of these proteins ions is explored exhaustively by hybrid Monte-Carlo/molecular dynamics calculations, allowing for zwitterionic states. From these calculations, the apparent gas-phase basicity of desolvated protein ions turns out to be the unifying trait dictating protein ionization by electrospray. Next, we develop a simple, general, adjustable-parameter-free model for the potential energy function of proteins. The model is capable to predict with remarkable accuracy the experimental charge of folded proteins and its well-known correlation with the square root of protein mass.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call