Abstract
This research revisits plot units, which were developed in the 1980s as a conceptual knowledge structure to represent the affect states of and emotional tensions between characters in narrative stories. We present a fully automated system, called AESOP, that generates plot unit representations for narrative texts. AESOP performs four steps: affect state recognition, character identification, affect state projection, and link creation. We also identify a type of knowledge that seems to be missing from existing lexical resources: verbs that impart positive or negative polarity onto their patients (e.g., “eat” imparts negative polarity because being eaten is bad, whereas “fed” imparts positive polarity because being fed is good). We develop two techniques to automatically harvest these “patient polarity verbs” (PPVs) from a Web corpus, and show that the PPVs improve affect state recognition. Finally, we evaluate AESOP’s performance on a set of fables, and present several analyses to shed light on the capabilities and limitations of current natural language processing technology for plot unit generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.