Abstract

We present a computational model for periodic pattern perception based on the mathematical theory of crystallographic groups. In each N-dimensional Euclidean space, a finite number of symmetry groups can characterize the structures of an infinite variety of periodic patterns. In 2D space, there are seven frieze groups describing monochrome patterns that repeat along one direction and 17 wallpaper groups for patterns that repeat along two linearly independent directions to tile the plane. We develop a set of computer algorithms that "understand" a given periodic pattern by automatically finding its underlying lattice, identifying its symmetry group, and extracting its representative motifs. We also extend this computational model for near-periodic patterns using geometric AIC. Applications of such a computational model include pattern indexing, texture synthesis, image compression, and gait analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.