Abstract

PurposeA diffusion-reaction-deformation coupled model is employed and implemented as a user-defined element (UEL) subroutine in the commercial finite element software package ABAQUS.Design/methodology/approachChemical reaction and diffusion are treated as two distinct processes by introducing the extent of reaction and the diffusion concentration as two kinds of independent variables, for which the independent governing equations for chemical reaction and diffusion processes are obtained. Furthermore, an exponential form of chemical kinetics, instead of the linearly phenomenological relation, between the reaction rate and the chemical affinity is used to describe reaction process. As a result, complex chemical reaction can be simulated, no matter it is around or away from equilibrium.FindingsTwo numerical examples are presented, one for validation of the model and another for the modeling of the deflection of a plane caused by a chemical reaction.Originality/value1. Independent governing equations for diffusion and reaction processes are given. 2. An exponential relation between the reaction rate and its driving force is employed. 3. The UEL subroutine is used to implement the finite element procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.